
0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E MAY/JUNE 2015 | IEEE SOFTWARE 23

IMPACT

Editor: Michiel van Genuchten
VitalHealth Software
genuchten@ieee.org

Editor: Les Hatton
Oakwood Computing Associates
lesh@oakcomp.co.uk

Drawing Conclusions from
Linked Data on the Web
The EYE Reasoner

Ruben Verborgh and Jos De Roo

This issue’s installment examines a software program reasoning
about the world’s largest knowledge source. Ruben Verborgh and
Jos De Roo describe how a small open source project can have a
large impact. This is the fourth open source product discussed in the
Impact department and the � rst written in the logic programming
language Prolog. —Michiel van Genuchten and Les Hatton

THE WEB is the world’s largest source
of knowledge for people—and ma-
chines. In the beginning, those machines
were mostly search engine crawlers
that extracted keywords from natural-
language texts. But now, the Web of-
fers them something far more powerful:
linked data.

Linked data goes back to the essence
of the Web and information itself, by
representing each piece of data as a link
between two things. For example, Fig-
ure 1 shows a triple stating that Thomas
Edison “knows” Nikola Tesla. Unlike
most hyperlinks between Edison and
Tesla, this one carries a speci� c mean-
ing. Yet linked data’s real bene� t goes
deeper: Edison and Tesla are repre-
sented by their Web address or URL. So,
if you want to know more about Edison
or Tesla, you can follow their URLs.
Therefore, linked data is linked on two
levels: each triple links two concepts,
and those concepts link to more infor-
mation about themselves.

If you look closely at Figure 1, you’ll
notice that the link type itself (the prop-
erty) is also a URL. So, if a machine
doesn’t understand what “knows”
means, it can look it up by following
that URL. This principle is crucial to
linked data: if you don’t know some-
thing, look it up. Which Thomas are
we talking about? What does “knows”
mean? Follow the URL to � nd out.

If you follow the URL for this par-
ticular “knows” (http://xmlns.com/foaf
/0.1/knows), you’ll learn about the na-
ture of this relationship. First, using
“knows” means the involved subject
and object are people. So even if we
don’t know Thomas or Nikola, we know
they’re people (as opposed to pets or car-
toon � gures). Second, this “knows” indi-
cates reciprocity, so Nikola also knows
Thomas. As humans, we can derive this
without even being aware of who Nikola
or Thomas are.

Such pieces of derived knowledge
seem human-speci� c, but linked data

IMPACT

24	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

also lets software reasoners arrive at
the same conclusions. This column
discusses how the EYE reasoner can
do just that and how industry is al-
ready using this.

Reasoning on the
Semantic Web with EYE
Since 2006, EYE (available un-
der the W3C license at http://
eulersharp.sourceforge.net) has been
tackling such reasoning challenges
on a large scale, thereby forming a
part of the bigger Semantic Web vi-
sion. In this vision, machines per-
form tasks on the Web for people,
combining linked data with con-
cepts such as reasoning and proof

to turn that data into knowl-
edge and concrete actions.

Continuing the previous
example, let’s see how EYE
moves from data to conclu-
sions. We can describe the
knows property with existing
concepts such as domain, range,
and SymmetricProperty. Many rea-
soners have built-in knowl-
edge; they would know what
those concepts mean and how
to apply them. The draw-
back, of course, is that only
built-in concepts can cre-
ate new knowledge. So, EYE
was designed to have the least
amount of inherent knowl-
edge; it’s extensible through
rules so that new knowledge

can be created. For example, the
EYE webpage offers rules that model
the SymmetricProperty concept as follows:

{
 ?property rdf:type owl:SymmetricProperty.
 ?subject ?property ?object.
}
=>
{
 ?object ?property ?subject.
}.

Perhaps surprisingly, this rule is
also a (special) triple: antecedent–
then–consequent. It explains that,
if a symmetric property links a
subject to an object, then it also

links that object to the subject.
So, if we give EYE the Edison–
knows–Tesla triple, the description
of “knows,” and the previous rule,
EYE will derive that Tesla also
knows Edison.

In isolation, this might not look
spectacular. After all, we gave EYE
all the knowledge it needed. How-
ever, the rules can cascade at a
large scale, so it becomes interest-
ing if we give EYE tons of knowl-
edge—say, millions of triples—and
it derives just the facts we want. For
instance, we might ask for “contem-
poraries of Nikola Tesla,” and by
the (derived) fact that Tesla knows
Edison, EYE could find Edison as
an answer. In a different use case,
we might feed EYE with medical
information of millions of patients
to identify adverse drug effects that
previously were hidden. EYE is used
regularly to solve such real-world
clinical applications.

EYE’s Internals
Algorithmically speaking, EYE is
a theorem prover. Users set a goal,
and EYE tries to reach it by applying
logical rules similar to what we men-
tioned previously, mostly working
backward from the goal. To evade
endless loops, the algorithm avoids
needlessly repeating previous work
through Euler path detection, simi-
lar to Leonhard Euler’s Königsberg
bridge problem. EYE interprets each
logical rule P ⇒ C (where P is a pre-
condition and C is a consequent) as
P AND NOT(C) ⇒ C, so that rules
execute only when they can generate
new triples.

A key characteristic of EYE’s ar-
chitecture is portability, because
interoperability is crucial to the Se-
mantic Web. EYE components are
interchangeable (see Figure 2). EYE
runs in a Prolog virtual machine,

http://dbpedia.org/resource/Thomas_Edison Subject

Predicate

Object

http://xmlns.com/foaf/0.1/knows

http://dbpedia.org/resource/Nikola_Tesla

Generic reasoning engine

Euler abstract machine

Prolog virtual machine

Central processing unit

Software Machines

Notation3 P-code

Prolog VM code

Assembly code

FIGURE 1. At the heart of linked data are triples: predicates link a subject to an object.

This triple states that Thomas Edison “knows” Nikola Tesla.

FIGURE 2. The EYE stack offers a generic

reasoning engine on top of interchangeable virtual

machines.

IMPACT

	 MAY/JUNE 2015 | IEEE SOFTWARE � 25

which is compiled to assembly code
and runs directly on the CPU. The
core of EYE, the Euler Abstract
Machine, is compatible with at least
two major Prolog engines (YAP and
SWI-Prolog). This machine accepts
N3 (Notation3) P-code, which is a
Prolog representation resulting from
parsing RDF (Resource Description
Framework) triples and N3 rules.
The entire stack thereby becomes a
generic reasoning engine, which is
extensible with any kind of domain-
specific rules. Because EYE can out-
put N3 P-code to a file, users can
create specific reasoning-engine in-
stances that have a certain rule set
preloaded for a particular domain.

EYE also exhibits external com-
patibility: it accepts exchangeable
N3 and Turtle RDF documents
from any source on the Web. Us-
ers can ask EYE to generate a proof
explaining how the given goal is
reached. Such proofs use a publicly
available, interoperable vocabulary,
so other parties can follow and
understand the line of reasoning.
Most important, this mechanism
allows independent proof valida-
tion, which contributes to one of
the forms of trust on the Seman-
tic Web. If a certain party comes
to a conclusion, any other party
can thus verify why that conclu-
sion is valid. Furthermore, EYE is
compatible with the W3C’s Rule
Interchange Format (RIF), so the
rules that constitute deductions and
proofs can be exchanged even be-
yond the N3 language.

EYE’s Development and Use
EYE originated around 1999, the
beginning of the Semantic Web era,
as a program called Euler. After
several iterations in other program-
ming languages, the Prolog incarna-
tion started in 2006, becoming the

predominant and only implemen-
tation, aptly named EYE (first for
Euler YAP [Prolog] Engine, then for
Euler Yet Another Proof Engine).
Since then, more than 150 updates
of EYE with new features and bug
fixes have been released; the sched-
ule was recently adapted to a three-
month cycle. The number of down-
loads from SourceForge has steadily
increased, with an average of 200
per month and a total of 30,000 (see
Figure 3). EYE is also available as a
public Web service and a Docker im-
age (with 500 downloads so far).

Jos De Roo develops and main-
tains EYE, and 30 people in its com-
munity support it through bug re-
ports, which have totaled more than
200 so far. These reports are usually
addressed within days. EYE’s cur-
rent code base consists of roughly
10,000 lines of Prolog source code,
which amounts to 100,000 lines of
Prolog virtual-machine code.

Being a generic reasoner, EYE is
applicable in a range of contexts. In
essence, it can tackle any problem

domain modeled in RDF (and N3
for rules). In particular, if a domain
was modeled with existing core on-
tological concepts from the Semantic
Web, such as those from the RDFS
(RDF Schema) and OWL vocabular-
ies, EYE can derive new triples right
away because it can reuse the exist-
ing N3 rules for these concepts.

In particular, EYE has several
active applications in the medical
sector.1 One example is the SALUS
(Scalable, Standard Based Interop-
erability Framework for Sustainable
Proactive Post Market Safety Stud-
ies) project, for which Agfa Health-
care is developing a semantic in-
teroperability service for postmarket
drug safety studies. Different data
sources each employ different on-
tologies, and EYE lets users trans-
form queries and data to and from
CREAM (Clinical Research Entities
Patterns: Advanced Model). This
works through rules for mapping
each ontology to CREAM. The Paris
public hospital system is employing
EYE for similar use cases.

2003 2004 2005 2006 201520142013201220112010200920082007

2,500

2,000

1,500

1,000

500

0

Year

No
. o

f d
ow

nl
oa

ds

FIGURE 3. EYE has been downloaded 30,000 times, at an average of 200 downloads

per month.

IMPACT

26 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Even though the use of reason-
ing isn’t always obvious, EYE is at
the heart of several applications.
Ghent University and iMinds are us-
ing EYE’s proof capabilities to solve
the problem of semantic service com-
position.2 Each service’s function-
ality is expressed in the RESTdesc
language, consisting of N3 rules,
so that EYE can reach a goal with
them—even though they’re not static
data rules. Agfa Healthcare experi-
ments with RESTdesc rules for se-
mantic clinical work� ow composi-
tion and execution. In this kind of

composition, data, (regular) rules,
and services work seamlessly to-
gether. So, regular ontological rea-
soning can take place at the same
time as service composition, creating
service connections that were previ-
ously infeasible.

For a look at technologies similar
to EYE, see the sidebar.

EYE’s Future
The Semantic Web world is still
under development, but the linked
data principles have already inspired
many people to make their data

available in RDF format. EYE’s role
there is clear: ensuring that linked
data in one vocabulary can be eas-
ily transformed into another, thanks
to explicit relations between those
vocabularies. Because these building
blocks are mostly in place, the EYE
project will focus on unifying logic
and explainable reasoning.

Unifying logic designates a logic
framework that can be shared across
different agents on the Web. So far,
Semantic Web logic has been frag-
mented. N3 hasn’t been standard-
ized, but the Turtle syntax on which
it’s based was � nally standardized
in 2014. In practice, not everything
can be expressed elegantly on the
level of N3 itself. Some basic blocks,
such as mathematical addition or
string comparison, are best exposed
through built-ins, special predicates
that aren’t necessarily implemented
in N3. To communicate with each
other, agents must agree on a pre-
de� ned set of built-ins with a rig-
orously speci� ed meaning. If they
don’t, results and corresponding
proofs will be untrustworthy. Al-
though the RIF standard includes
such a set, adoption has been mini-
mal. EYE and other reasoners must
strive to improve this.

Explainable reasoning indicates
the possibility of agents producing
and exchanging proofs. Any con-
clusion reached by a reasoner must
be independently veri� able to en-
able real-world applications. For
instance, for � nancial or safety cal-
culations, all the involved parties
want to ensure they can trust the
result. And, if these proofs are used
in work� ow contexts, they re� ect on
an entire agent-driven process. EYE
wants to play a role in such an agent-
enabled Web, and the current proof-
enabled reasoning functionality is
the � rst step toward that.

RELATED WORK IN REASONERS

A few alternatives to the EYE reasoner exist—most notably, the cwm, Jena,
and Fuxi reasoners. However, EYE offers far superior performance. For in-
stance, EYE solves the Deep Taxonomy Benchmark problem (http://eulersharp
.sourceforge.net/2003/03swap/dtb-note) for 100,000 triples in 4.8 seconds,
whereas cwm needs nine days and Jena goes out of memory. Researchers
have reported similar drastic performance improvements with the RESTdesc
Composition Benchmark (http://eulersharp.sourceforge.net/2003/03swap
/rcb-note) and Basic MONADIC Benchmark (http://eulersharp.sourceforge
.net/2003/03swap/bmb-note).

Three other products described previously in IEEE Software’s Impact de-
partment are similar to EYE. RealPlayer is also an open source product that
has seen industrial applications.1 It’s much larger (millions of lines of code). In
2010, the community comprised 150,000 engineers, many of whom worked
in mobile phone companies that were part of the Helix community. YAWL (Yet
Another Work� ow Language), another open source product, was also written
by a small team of engineers and is comparable in size and installed base.2
Bayesian networks are similar to EYE in terms of scienti� c grounding, the
availability of a free version, size, and volume.3

References
 1. L. Bouchard, “Multimedia Software for Mobile Phones,” IEEE Software, vol. 27, no. 3, 2010,

pp. 8–10.
 2. M.J. Adams, A.H.M. ter Hofstede, and M. La Rosa, “Open Source Software for Work� ow Man-

agement: The Case of YAWL,” IEEE Software, vol. 28, no. 3, 2011, pp. 16–19.
 3. N. Fenton and M. Neil, “Decision Support Software for Probabilistic Risk Assessment Using

Bayesian Networks,” IEEE Software, vol. 31, no. 2, 2014, pp. 21–26.

IMPACT

	 MAY/JUNE 2015 | IEEE SOFTWARE � 27

I n the future, reasoners could
have a large impact on software.
A few decades ago, software

took over many jobs from hardware:
calculations that used to be hard-
wired became soft-wired as lines of
code. Although some highly opti-
mized calculations still happen in
hardware, most are now performed
with special-purpose software on
generic-purpose hardware. Simi-
larly, reasoners will start rewiring
software for specific situations. EYE
already does this when performing
rule-based Web service composition.
In the end, this opens the door to
automatically customized software
processes. What software once did
for hardware, reasoning might one
day do for software.

References
	 1.	 E. Papageorgiou et al., “Application of

Probabilistic and Fuzzy Cognitive Ap-
proaches in Semantic Web Framework for
Medical Decision Support,” Computer
Methods and Programs in Biomedicine,
vol. 112, no. 3, 2013, pp. 590–598.

	 2.	 R. Verborgh et al., “Capturing the Func-
tionality of Web Services with Functional
Descriptions,” Multimedia Tools and
Applications, vol. 64, no. 2, 2012, pp.
365–387.

RUBEN VERBORGH is a postdoctoral researcher
in semantic hypermedia at the Multimedia Lab,
a research group of iMinds and Ghent University.
Contact him at ruben.verborgh@ugent.be.

JOS DE ROO is a researcher at Agfa Healthcare.
Contact him at jos.deroo@agfa.com.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

PURPOSE: The IEEE Computer Society is the world’s largest association of computing

professionals and is the leading provider of technical information in the field.

MEMBERSHIP: Members receive the monthly magazine Computer, discounts, and

opportunities to serve (all activities are led by volunteer members). Membership is

open to all IEEE members, affiliate society members, and others interested in the

computer field.

COMPUTER SOCIETY WEBSITE: www.computer.org

Next Board Meeting: 1–5 June 2015, Atlanta, GA, USA

EXECUTIVE COMMITTEE
President: Thomas M. Conte

President-Elect: Roger U. Fujii; Past President: Dejan S. Milojicic; Secretary:

Cecilia Metra; Treasurer, 2nd VP: David S. Ebert; 1st VP, Member & Geographic

Activities: Elizabeth L. Burd; VP, Publications: Jean-Luc Gaudiot; VP, Professional

& Educational Activities: Charlene (Chuck) Walrad; VP, Standards Activities: Don

Wright; VP, Technical & Conference Activities: Phillip A. Laplante; 2015–2016

IEEE Director & Delegate Division VIII: John W. Walz; 2014–2015 IEEE Director &

Delegate Division V: Susan K. (Kathy) Land; 2015 IEEE Director-Elect & Delegate

Division V: Harold Javid

BOARD OF GOVERNORS
Term Expiring 2015: Ann DeMarle, Cecilia Metra, Nita Patel, Diomidis Spinellis,

Phillip A. Laplante, Jean-Luc Gaudiot, Stefano Zanero

Term Expriring 2016: David A. Bader, Pierre Bourque, Dennis J. Frailey, Jill I.

Gostin, Atsuhiro Goto, Rob Reilly, Christina M. Schober

Term Expiring 2017: David Lomet, Ming C. Lin, Gregory T. Byrd, Alfredo Benso,

Forrest Shull, Fabrizio Lombardi, Hausi A. Muller

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Director, Governance & Associate Executive

Director: Anne Marie Kelly; Director, Finance & Accounting: John G. Miller;

Director, Information Technology Services: Ray Kahn; Director, Membership: Eric

Berkowitz; Director, Products & Services: Evan M. Butterfield; Director, Sales &

Marketing: Chris Jensen

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036-4928

Phone: +1 202 371 0101 • Fax: +1 202 728 9614 • Email: hq.ofc@computer.org

Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720

Phone: +1 714 821 8380 • Email: help@computer.org

Membership & Publication Orders

Phone: +1 800 272 6657 • Fax: +1 714 821 4641 • Email: help@computer.org

Asia/Pacific: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku, Tokyo 107-

0062, Japan • Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553 • Email: tokyo.ofc@

computer.org

IEEE BOARD OF DIRECTORS
President & CEO: Howard E. Michel; President-Elect: Barry L. Shoop; Past

President: J. Roberto de Marca; Director & Secretary: Parviz Famouri; Director

& Treasurer: Jerry Hudgins; Director & President, IEEE-USA: James A. Jefferies;

Director & President, Standards Association: Bruce P. Kraemer; Director & VP,

Educational Activities: Saurabh Sinha; Director & VP, Membership and Geographic

Activities: Wai-Choong Wong; Director & VP, Publication Services and Products:

Sheila Hemami; Director & VP, Technical Activities: Vincenzo Piuri; Director &

Delegate Division V: Susan K. (Kathy) Land; Director & Delegate Division VIII:

John W. Walz

revised 27 Jan. 2015

