Complex identities — explanatory proofs
What this is?
A single-page explainer of classic complex-number identities. Each card states the identity, gives a short reason, and then performs a numeric check right in the browser to confirm the result. No external libraries or servers are used.
Numbers are shown to ~12 decimals.
sqrt(-1)
Answer: √(-1) = i
Reason: −1 = eiπ (principal). √(eiπ) = eiπ/2 = i.
Check: i² =
exp(i·π) + 1
Answer: eiπ + 1 = 0
Reason: Euler: eiθ = cos θ + i sin θ ⇒ eiπ = −1.
Check: eiπ + 1 ≈
log(-1)
Answer: log(−1) = iπ (principal)
Reason: log z = ln|z| + i Arg(z); |−1| = 1 ⇒ ln|z| = 0, Arg(−1) = π.
Check: exp(log(−1)) =
log(-i)
Answer: log(−i) = −iπ/2 (principal)
Reason: |−i| = 1, Arg(−i) = −π/2 ⇒ log(−i) = 0 + i(−π/2).
Check: exp(log(−i)) =
log(i·x) with x = 0.73
Answer: log(i·x) = ln x + iπ/2 (x>0)
Reason: Arg(i x) = π/2 (principal), |i x| = x ⇒ ln|·| = ln x.
Check: exp(log(i·x)) ≈ and i·x =
cos(i·x) with x = 0.73
Answer: cos(i x) = cosh x
Reason: cos z = (eiz + e−iz)/2; set z = i x ⇒ (e−x + ex)/2.
Check: cos(i x) ≈ ; cosh(x) =
sin(i·x) with x = 0.73
Answer: sin(i x) = i·sinh x
Reason: sin z = (eiz − e−iz)/(2i); set z = i x ⇒ i(e−x − ex)/2.
Check: sin(i x) ≈ ; i·sinh(x) =
asin(i·x) with x = 0.73
Answer: asin(i x) = i·asinh x
Reason: Definition asin z = −i·log( i z + √(1 − z²) ); put z = i x and use √(1 + x²) − x > 0; also ln(√(1 + x²) − x) = −ln(x + √(1 + x²)).
Check: i·asinh(x) = ; −i·ln(√(1 + x²) − x) =
sqrt(i)
Answer: √i = (1 + i)/√2
Reason: i = eiπ/2; √i = eiπ/4 = cos(π/4) + i sin(π/4) = (1 + i)/√2.
Check: (√i)² ≈
acos(2)
Answer: acos(2) = i·ln(2 + √3)
Reason: For |z| > 1, acos z = i ln(z + √(z² − 1)) (principal). For z = 2: √3 and ln(2 + √3).
Check: cos(acos(2)) = cos(i·ln(2 + √3)) = cosh(ln(2 + √3)) ≈
asin(2)
Answer: asin(2) = π/2 − i·ln(2 + √3)
Reason: asin z = π/2 − acos z and acos(2) = i ln(2 + √3).
Check: sin(asin(2)) = cosh(ln(2 + √3)) ≈
i^i
Answer: i^i = e−π/2
Reason: i^i = e^{i log(i)} with principal log(i) = iπ/2 ⇒ exponent = −π/2 (real).
Check: numeric value ≈